Abstract

To investigate the effect of SAPO-34 particle size (with a fixed Si mole fraction in its framework) and that of the Si mole fraction (in a SAPO-34 framework with fixed particle size) on propylene selectivity and production rate for the conversion of ethylene to propylene, SAPO-34 was prepared by hydrothermal synthesis using tetraethyl ammonium hydroxide or morpholine as a structural agent. The conversion of ethylene was carried out at 473 K using SAPO-34. The selectivity for propylene, the rate of propylene production, and the lifetime of the catalyst were strongly influenced by the catalyst crystal size. The SAPO-34 with a approximately 2.5 microm particle size had the highest selectivity for propylene (approximately 80%) up to a high conversion of ethylene (approximately 70%), while SAPO-34 with smaller particles had a longer catalyst lifetime, implying that catalyst deactivation was suppressed. The mole fraction of Si in the SAPO-34 framework with fixed particle size had little influence on the selectivity for propylene, indicating that the acid strength of SAPO-34 is independent of the Si mole fraction and all protons in SAPO-34 behave equivalently. Furthermore, the acid strength of protons determined by the measurements of NH(3)-TPD (temperature-programmed desorption) spectra did not depend on either the Si mole fraction or the SAPO-34 particle size. This result was also evident in the cracking rate of n-butane, which increased proportionally with increasing number of protons in SAPO-34.The number of protons generated by the incorporation of Si4+ into the SAPO-34 lattice increased proportionally, up to one Si atom introduced into every cage of SAPO-34, but did not continue to increase with further introduction of Si4+ into the lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call