Abstract

Renal and preganglionic adrenal sympathetic nerve activities (RSNA, ASNA) are regulated differentially. Various cardiopulmonary receptor (CPR) stimulation procedures were performed to distinguish short-term and prolonged as well as mechanical and chemical stimulatory effects on RSNA and ASNA. In anesthetized male Sprague-Dawley rats blood pressure, heart rate, left ventricular end-diastolic pressure (LVEDP), RSNA and ASNA were recorded. CPRs were stimulated as follows: Short-term mechanical: LVEDP changes (+/-4, +/-6, +/-8 mmHg) via aortic and caval vein occlusion; Short-term chemical: phenylbiguanide (PBG-bolus, 0.1, 1, 10 microg IV); Prolonged mechanical (15 min): volume expansion (0.9% NaCl, 5% body weight) and hemorrhage, to modulate LVEDP; Prolonged chemical: PBG infusion (32 microg/min IV, for 15 min); Stimulations were done with 1) all afferents intact, 2) bilateral cervical vagotomy (VX), 3) VX + SAD (sino-aortic denervation; short-term protocols and hemorrhage).1) Short-term mechanical stimuli decreased RSNA (-52 +/- 12%) and ASNA (-37 +/- 13%). 2) PBG-bolus decreased RSNA (-54 +/- 12%) but increased ASNA (+40 +/- 13%). 3) Volume expansion decreased RSNA (-55 +/- 7%), ASNA was unaffected. 4) PBG infusion persistently decreased RSNA (-60 +/- 6%) but just shortly increased ASNA (+120 +/- 15%); VX abolished all responses. 5) Hypotensive hemorrhage decreased RSNA (-39 +/- 9%) but increased ASNA (+42 +/- 9%). VX abolished RSNA response; ASNA response only disappeared with VX + SAD.Short-term mechanical CPR stimulation uniformly decreased sympathetic activities, whereas chemical stimulation had opposing effects on renal and adrenal sympathetic responses. All prolonged stimuli decreased RSNA, whereas ASNA was virtually unaffected: Sympathetic out.ow is differentially controlled not only with regard to target organs or afferent receptors but also stimulus time pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.