Abstract

The present article summarizes the development of polypropylene-bamboo/glass fiber reinforced hybrid composites (BGRP) using an intermeshing counter rotating twin screw extruder followed by injection molding. Maleic anhydride grafted polypropylene (MAPP) has been used as a coupling agent to improve the interfacial interaction between the fibers and matrix. The crystallization and melting behavior were investigated employing differential scanning calorimetry (DSC). Thermogravimetric analysis (TGA) indicates an increase in thermal stability of the matrix polymer with incorporation of bamboo and glass fibers, confirming the effect of hybridization and efficient fiber matrix interfacial adhesion. The dynamic mechanical analysis (DMA) showed an increase in storage modulus ( E′) indicating higher stiffness in case of hybrid composites as compared with untreated composites and virgin matrix. The rheological behavior of the hybrid composites has also been studied using time–temperature superposition (TTS) principle and corresponding viscoelastic master curves have been constructed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.