Abstract

Based on measurements of the time-resolved delayed fluorescence, the influence of universal interactions on the collisional vibrational energy transfer is studied in mixtures of vibrationally excited polyatomic molecules (acetophenone, benzophenone, and anthraquinone) with inert bath gases (Ar, C2H4, SF6, CCl4, and C5H12). From the dependences of the decay rates of delayed fluorescence on bath gas pressure, the efficiencies of the establishment of vibrational (V-V relaxation) and thermal (V-T relaxation) equilibrium after excitation of molecules into the vibrational quasi-continuum of a triplet state are estimated. The main emphasis is on studying the dependences of the efficiency of collisional vibrational energy transfer on temperature and the molecular characteristics of collision partners. It is found that the efficiency increases with the complication of the structure of bath gases for the V-V process and decreases upon the increasing of their mass for the V-T process. For the temperature range 273–553 K, the negative temperature dependence of the V-V transfer probability and the positive (Landau-Teller) dependence of the V-T transfer probability were obtained. It is concluded that the above regularities reflect the dominant role of long-range attractive forces in initiating the quasi-resonant V-V transfer and of short-range repulsive forces in the V-T transfer of vibrational energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call