Abstract

PurposeThe aim of this study was to assess the effects of adding shoe mass on running economy (RE), gait characteristics, neuromuscular variables and performance in a group of trained runners.MethodsEleven trained runners (6 men and 5 women) completed four evaluation sessions separated by at least 7 days. The first session consisted of a maximal incremental test where the second ventilatory threshold (VT2) and the speed associated to the VO2max (vVO2max) were calculated. In the next sessions, RE at 75, 85, and 95% of the VT2 and the time to exhaustion (TTE) at vVO2max were assessed in three different shoe mass conditions (control, +50 g and +100 g) in a randomized, counterbalanced crossover design. Biomechanical and neuromuscular variables, blood lactate and energy expenditure were measured during the TTE test.ResultsRE worsened with the increment of shoe mass (Control vs. 100 g) at 85% (7.40%, 4.409 ± 0.29 and 4.735 ± 0.27 kJ⋅kg−1⋅km−1, p = 0.021) and 95% (10.21%, 4.298 ± 0.24 and 4.737 ± 0.45 kJ⋅kg−1⋅km−1, p = 0.005) of VT2. HR significantly increased with the addition of mass (50 g) at 75% of VT2 (p = 0.01) and at 75, 85, and 95% of VT2 (p = 0.035, 0.03, and 0.03, respectively) with the addition of 100 g. TTE was significantly longer (∼22%, ∼42 s, p = 0.002, ES = 0.149) in the Control condition vs. 100 g condition, but not between Control vs. 50 g (∼24 s, p = 0.094, ES = 0.068).ConclusionOverall, our findings suggest that adding 100 g per shoe impairs running economy and performance in trained runners without changes in gait characteristics or neuromuscular variables. These findings further support the use of light footwear to optimize running performance.

Highlights

  • Running economy (RE) is a key factor that influences long-distance running performance (Conley and Krahenbuhl, 1980) and is usually defined as the steady-state oxygen uptake (VO2) required at a given submaximal speed or as the energy requirement per unit of distance run (Fletcher et al, 2009)

  • The study was performed in accordance with the principles of the Declaration of Helsinki (October 2008, Seoul), and the experimental protocols were approved by the local ethics committee

  • Regarding the spatiotemporal parameters and neuromuscular stiffness (Kvert and Kleg), we found no significant differences between shoe mass conditions during the time to exhaustion (TTE) test (p > 0.05)

Read more

Summary

Introduction

Running economy (RE) is a key factor that influences long-distance running performance (Conley and Krahenbuhl, 1980) and is usually defined as the steady-state oxygen uptake (VO2) required at a given submaximal speed or as the energy requirement per unit of distance run (Fletcher et al, 2009). RE is influenced by multiple factors, including metabolic, cardiorespiratory, neuromuscular, Influence of Shoe Mass on Performance biomechanical, training and environmental factors (Saunders et al, 2004). Some of these factors can be changed chronically through training (Barnes and Kilding, 2015), whereas others can be modified acutely through interventions such as changes in footwear (Hoogkamer et al, 2018). If specific shoes can decrease the energy cost of running, athletes would be able to display faster running speeds at a given metabolic rate (Daniels, 1985), which is key when trying to break the marathon world record (Hoogkamer et al, 2018).

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call