Abstract
The effect of variations in microbubble shell composition on microbubble resonance frequency is revealed through experiment. These variations are achieved by altering the mole fraction and molecular weight of functionalized polyethylene glycol (PEG) in the microbubble phospholipid monolayer shell and measuring the microbubble resonance frequency. The resonance frequency is measured via a chirp pulse and identified as the frequency at which the pressure amplitude loss of the ultrasound wave is the greatest as a result of passing through a population of microbubbles. For the shell compositions used herein, we find that PEG molecular weight has little to no influence on resonance frequency at an overall PEG mole fraction (0.01) corresponding to a mushroom regime and influences the resonance frequency markedly at overall PEG mole fractions (0.050–0.100) corresponding to a brush regime. Specifically, the measured resonance frequency was found to be 8.4, 4.9, 3.3 and 1.4 MHz at PEG molecular weights of 1000, 2000, 3000 and 5000 g/mol, respectively, at an overall PEG mole fraction of 0.075. At an overall PEG mole fraction of just 0.01, on the other hand, resonance frequency exhibited no systematic variation, with values ranging from 5.7 to 4.9 MHz. Experimental results were analyzed using the Sarkar bubble dynamics model. With the dilatational viscosity held constant (10–8 N·s/m) and the elastic modulus used as a fitting parameter, model fits to the pressure amplitude loss data resulted in elastic modulus values of 2.2, 2.4, 1.6 and 1.8 N/m for PEG molecular weights of 1000, 2000, 3000 and 5000 g/mol, respectively, at an overall PEG mole fraction of 0.010 and 4.2, 1.4, 0.5 and 0.0 N/m, respectively, at an overall PEG mole fraction of 0.075. These results are consistent with theory, which predicts that the elastic modulus is constant in the mushroom regime and decreases with PEG molecular weight to the inverse 3/5 power in the brush regime. Additionally, these results are consistent with inertial cavitation studies, which revealed that increasing PEG molecular weight has little to no effect on inethe rtial cavitation threshold in the mushroom regime, but that increasing PEG molecular weight decreases inertial cavitation markedly in the brush regime. We conclude that the design and synthesis of microbubbles with a prescribed resonance frequency is attainable by tuning PEG composition and molecular weight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.