Abstract

We study the solid mechanical properties of several thixotropic suspensions as a function of the shear stress history applied during their flow stoppage and their aging in their solid state. We show that their elastic modulus and yield stress depend strongly on the shear stress applied during their solid-liquid transition (i.e., during flow stoppage) while applying the same stress only before or only after this transition may induce only second-order effects: there is negligible dependence of the mechanical properties on the preshear history and on the shear stress applied at rest. We also found that the suspensions age with a structuration rate that hardly depends on the stress history. We propose a physical sketch based on the freezing of a microstructure whose anisotropy depends on the stress applied during the liquid-solid transition to explain why the mechanical properties depend strongly on this stress. This sketch points out the role of the internal forces in the colloidal suspensions' behavior. We finally discuss briefly the macroscopic consequences of this phenomenon and show the importance of using a controlled-stress rheometer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.