Abstract

This work examines the energy-absorption process in thin woven laminates made from carbon fibres, with the aim of analysing the energy employed in the formation of a shear plug. This study was conducted with a simplified model which considered five energy-absorption mechanisms. The model was validated with experimental tests and numerical simulations, with regard to the residual velocity of the projectile and perforation velocity. The model makes it possible to evaluate the influence of the shear plugging in laminates of different thickness. It has been demonstrated that this energy-absorption mechanism needs to be considered in the analysis. The main energy-absorption mechanisms for impact at low velocity (i.e. below the perforation velocity) are related to the elastic deformation of fibres and shear plugging, whereas when a higher impact velocity is considered (i.e. above the perforation velocity) such mechanisms are related to the acceleration field of the laminate and the shear plugging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.