Abstract

Understanding flow properties and flow effects of liquid and semisolid aluminum became a key solution for know-how of the casting processes. It is essential to find and study a new solution of interactive and efficient structure control of processed aluminum suspension. This task was solved by an adaptation of an electromagnetic actuator and high-resolution tempering unit to a conventional rotational rheometer. Initially, the research reveals a precise detection of transition temperatures in steady and transient shear flow. It was found that superposition of mechanical vibration orthogonal to the shear flow radically decreases shear viscosity of semisolid slurry. However, liquid state rheological properties show structural behavior, but stayed insensitive to mechanical oscillations. Analysis of boundary conditions before fundamental experiment shows that no considerable side effects were present during the experiment under vibration. The study reveals transition of strongly shear-thinning concentrated aluminum suspension to almost Newtonian fluid under vibration in shear flow. It is recommended to relate such phenomenon to non-equilibrium between structure formation and structure break-up under vibration and hydrodynamic forces of shear flow. The results illustrate how sensitive the structure of slurry is to vibration in general and in particular during the solidification phase. The revealed results provide a solid basis for further fundamental investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.