Abstract
To improve the film cooling performance by shaped injection holes for the turbine blade leading edge region, we have investigated the flow characteristics of the turbine blade leading edge film cooling using five different cylindrical body models with various injection holes, which are a baseline cylindrical hole, two laidback (spanwise-diffused) holes, and two tear-drop shaped (spanwise- and streamwise-diffused) holes, respectively. Mainstream Reynolds number based on the cylinder diameter was 7.1 × 10 4 and the mainstream turbulence intensities were about 0.2%. The effect of injectant flow rates was studied for various blowing ratios of 0.7, 1.0, 1.3 and 1.7, respectively. The density ratio in the present study is nominally equal to one. Detailed temperature distributions of the cylindrical body surfaces are visualized by means of an infrared thermography (IRT). Results show that the conventional cylindrical holes have poor film cooling performance compared to the shaped holes. Particularly, it can be concluded that the laidback hole (Shape D) provides better film cooling performance than the other holes and the broader region of high effectiveness is formed with fairly uniform distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.