Abstract

The theoretical basis of the work consists in that the dissipative processes in non-spherical nanoparticles, whose sizes are smaller than the mean free path of electrons, are characterized by a tensor quantity, whose diagonal elements together with the depolarization coefficients determine the half-widths of plasma resonances. Accordingly, the averaged characteristics are obtained for an ensemble of metal nanoparticles with regard for the influence of the nanoparticle shape on the depolarization coefficients and the components of the optical conductivity tensor. Three original variants of the nanoparticle shape distribution function are proposed on the basis of the joint application of the Gauss and “cap” functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.