Abstract

Microstructure-based finite element simulations were used to study the influence of grain shape fabric and crystal texture on thermoelastic responses related to marble degradation phenomena. Calcite was used as an illustrative example for studying extremes of shape preferred orientation (SPO) in shape fabric and lattice preferred orientation (LPO) in crystal texture. Three SPOs were analyzed: equiaxed grains, elongated grains, and a mixture of equiaxed and elongated grains. Three LPOs were considered: a random orientation distribution function and two degrees of strong directional crystal texture. Finally, the correlation between the direction of the LPO with respect to that of the SPO was examined. Results show that certain combinations of SPO, LPO, and their directional relationship have significant influence on the thermomechanical behavior of marble. For instance, while there is no major dependence of the elastic strain energy density and the maximum principal stress on SPO for randomly textured microstructures, there is a strong synergy between LPO and its directional relationship with respect to the SPO direction. Microcracking precursors, elastic strain energy density, and maximum principal stress, decrease when the crystalline c-axes have fiber texture perpendicular to the SPO direction, but increase significantly when the c-axes have fiber texture parallel to the SPO direction. Moreover, the microstructural variability increases dramatically for these latter configurations. In general, the influence of LPO was as expected, namely, the strain energy density and the maximum principal stress decreased with more crystal texture, apart from for the exception noted above. Spatial variations of these precursors indicated regions in the microstructure with a propensity for microcracking. Unexpectedly, important variables were the microstructural standard deviations of the spatial distributions of the microcracking indicators. These microstructural standard deviations were as large as or larger than the variables themselves. The elastic misfit-strain contributions to the coefficients of thermal expansion were also calculated, but their dependence was as expected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.