Abstract

Potassium channels in vascular smooth muscle (VSM) control vasodilation and are potential regulatory targets. This study evaluated effects of sex differences, exercise training (EX), and high-fat diet (HF) on K(+) currents (I(K)) of coronary VSM cells. Yucatan male and female swine were assigned to either sedentary confinement (SED), 16 wk of EX, 20 wk of HF, or 20 wk of HF with 16 wk of EX (HF-EX). VSM cells of normal-diet SED animals exhibited three components of I(K): 4-aminopyridine-sensitive I(K(KV)), TEA-sensitive I(K(BK)), and 4-aminopyridine + TEA-insensitive I(K). Females exhibited significantly higher basal I(K) than males in the same group. EX increased basal I(K) in males and females. HF reduced I(K) in males and females and nullified effects of EX. Endothelin-1 increased I(K) significantly in males but not in females. In the presence of endothelin-1, 1) I(K(KV)) was similar in SED males and females and EX increased I(K(KV)) to a greater extent in males than in females and 2) I(K(BK)) was greater in SED females than in males and EX increased I(K(BK)) to a greater extent in males, resulting in I(K(BK)) similar to EX females. Importantly, HF nullified effects of EX on I(K(KV)) and I(K(BK)). These data indicate that basal I(K) of SED female swine is inherently greater than that shown in SED males and that males require EX to achieve comparable levels of I(K). Importantly, HF reduced I(K) in males and females and nullified effects of EX, suggesting HF abrogates beneficial effects of EX on coronary smooth muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call