Abstract

Background. The sevoflurane degradation product compound A is nephrotoxic in rats. In contrast, patient exposure to compound A during sevoflurane anesthesia has no clinically significant renal effects. The mechanism for this difference is incompletely understood. One possibility is that the metabolism and toxicity of compound A in humans is prevented by sevoflurane. However, the effect of sevoflurane on compound A metabolism and nephrotoxicity is unknown. Thus, the purpose of this investigation was to determine the effect of sevoflurane on the metabolism and renal toxicity of compound A in rats.Methods. Male rats received 0.25 mmol/kg intraperitoneal compound A, alone and during sevoflurane anesthesia (3%, 1.3 minimum alveolar concentration, for 3 h). Compound A metabolites in urine were quantified, and renal function was evaluated by serum creatinine and urea nitrogen, urine volume, osmolality, protein excretion, and renal tubular histology.Results. Sevoflurane coadministration with compound A inhibited compound A defluorination while increasing relative metabolism through pathways of sulfoxidation and beta-lyase-catalyzed metabolism, which mediate toxicity. Sevoflurane coadministration with compound A increased some (serum creatinine and urea nitrogen, and necrosis) but not other (urine volume, osmolality, and protein excretion) indices of renal toxicity.Conclusions. Sevoflurane does not suppress compound A nephrotoxicity in rats in vivo. These results do not suggest that lack of nephrotoxicity in surgical patients exposed to compound A during sevoflurane anesthesia results from an inhibitory effect of sevoflurane on compound A metabolism and toxicity. Rather, these results are consistent with differences between rats and humans in compound A exposure and inherent susceptibility to compound A nephrotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.