Abstract

Nitrile hydratases (NHases) are Fe(III)- and Co(III)-containing hydrolytic enzymes that convert nitriles into amides. The metal-center is contained within an N(2)S(3) coordination motif with two post-translationally modified cysteinates contained in a cis arrangement, which have been converted into a sulfinate (R-SO(2)(-)) and a sulfenate (R-SO(-)) group. Herein, we utilize Ru L-edge and ligand (N-, S-, and P-) K-edge X-ray absorption spectroscopies to probe the influence that these modifications have on the electronic structure of a series of sequentially oxidized thiolate-coordinated Ru(II) complexes ((bmmp-TASN)RuPPh(3), (bmmp-O(2)-TASN)RuPPh(3), and (bmmp-O(3)-TASN)RuPPh(3)). Included is the use of N K-edge spectroscopy, which was used for the first time to extract N-metal covalency parameters. We find that upon oxygenation of the bis-thiolate compound (bmmp-TASN)RuPPh(3) to the sulfenato species (bmmp-O(2)-TASN)RuPPh(3) and then to the mixed sulfenato/sulfinato speices (bmmp-O(3)-TASN)RuPPh(3) the complexes become progressively more ionic, and hence the Ru(II) center becomes a harder Lewis acid. These findings are reinforced by hybrid DFT calculations (B(38HF)P86) using a large quadruple-ζ basis set. The biological implications of these findings in relation to the NHase catalytic cycle are discussed in terms of the creation of a harder Lewis acid, which aids in nitrile hydrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call