Abstract

This study presents the influence of functionalized sepiolite and electron beam irradiation on the structural and physicochemical properties of high density polyethylene (HDPE)/starch blends. HDPE/Starch blends containing varying amounts of sepiolite [from 2 to 6 parts per hundred (phr) resins] were prepared in an internal mixer and subjected to electron beam irradiation. The structural analysis of nanocomposites revealed an interaction among the incorporated components. The morphological analysis depicted the void-free dispersion of additives in the nanocomposites as well as an improvement in the compatibility between the matrix and additives. The sepiolite served as a heat barrier and improved the thermal stability of blend upto a maximum of 45°C. The ultimate tensile strength and Young's modulus (E) of blend was slightly improved with the incorporation of sepiolite and radiation. On the contrary, the E of nanocomposites was significantly improved with radiation dose. The sample containing 6 phr sepiolite and irradiated at 100 kGy showed 61% increase in E when compared with its unirradiated counterpart. Likewise, the thermal distortion temperature and Vicat softening temperature of the blend was slightly changed with the incorporation of sepiolite and radiation dose; however, increased with radiation dose in the nanocomposites. The improvements in the properties of nanocomposites with radiation dose were assigned to the formation of radiation-induced crosslinked network as revealed by gel content analysis. The results presented here revealed substantial improvements in the properties of nanocomposites with irradiation, which pave way for their potential applications in various sectors including packaging materials for radiation sterilizable products. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call