Abstract

We investigate the modulation instability in oppositely directed coupler in the presence of higher-order effects. Using linear stability analysis, we obtain an expression for instability gain. Special attention is paid to find out the influence of self-steepening effect and intrapulse Raman scattering on modulation instability. The study shows that in normal dispersion, regime instability gain exists even if perturbation frequency (Ω) is zero. But the instability gain at Ω=0 is zero, when the dispersion is anomalous. Moreover, self-steepening effect and intrapulse Raman scattering form new instability regions and, hence, provide a new way to generate solitons or ultrashort pulses. Further, efficient control of modulation instability by adjusting self-steepening effect and intrapulse Raman scattering also successfully demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call