Abstract
Caper is a perennial shrub that is widespread in the Mediterranean Basin. Although the fruits contain many seeds, they germinate slowly and with very low percentages, due to their nondeep physiological dormancy. The influence of the testa and endosperm, as well as the effect of applying gibberellic acid (GA3) solutions on seed germination to release its dormancy, are reported in this study. The mechanical resistance exerted by the testa and endosperm against radicle protrusion in mature caper seeds was measured. The best germination results were obtained with seeds devoid of testa wetted with water and with intact seeds wetted with a 500 mg L-1 GA3 solution, without statistical differences between them. The GA3 addition triggers an increase in both the content of endogenous gibberellins (GA) and the GA/abscisic acid ratio, increasing germination. Its germination consists of two temporally separated events: testa cracking and endosperm piercing. Testa cracking begins in the hilum-micropillar area; it involves a signal from the embryo, which GA can replace, possibly by increasing the growth potential of the embryo. After testa cracking, the radicle emerges through a hole in the micropylar endosperm. The puncture force necessary to pierce the micropylar endosperm decreased drastically during the first day of imbibition, remaining practically constant until testa cracking, decreasing afterwards, regardless of the addition or not of gibberellins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.