Abstract

In the UK, several coastal nuclear sites have been identified as vulnerable to future sea level rise. Legacy contamination at these sites has accumulated in sub-surface sediments at risk of future seawater inundation and intrusion. Porewater salinization, changes in pH and the influx of oxygen into sediments may impact the stability of sediment associated uranium (U). In this study, saturated column experiments were performed to compare the mobilisation of U from oxic and reduced sediments into seawater under environmentally relevant flow conditions. Uranium release profiles were independent of the initial geochemistry of the sediments. Uranium release from the sediments was kinetically controlled, showing relatively slow desorption kinetics, with release initially limited by the impact of the sediments on the pH of the seawater. Significant U release only occurred when the pH was sufficiently high for the formation of U-carbonate complexes (pHoxic 6.3; pHreduced 7.5). Uranium was more strongly bound to the reduced sediments and after 400 pore volumes of seawater flow, release was more extensive from the initially oxic (46%) compared with initially nitrate reducing (27%) and iron reducing (18%) sediments. The products of iron cycling appeared to act as a buffer limiting U mobilisation, but the on-going dissolution of the Fe-phases suggests that they did not form a permanent protective layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.