Abstract
In large-diameter shield tunnels, applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining. The secondary lining thickness is a key parameter in the design of a double lining structure, which is worth being explored. Based on an actual large-diameter shield tunnel, loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure. The test results show that within the range of secondary lining thicknesses discussed, the load-bearing limit of the double-layer lining increases with growing secondary lining thickness. As a passive support, the secondary lining acts as an auxiliary load-bearing structure by contacting the segment. And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining, with both the contact pressure level and the contact area between the two varying. For double-layer lining structures in large-diameter shield tunnels, it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment, as this allows them to have a coordinated deformation and a good joint load-bearing effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.