Abstract

Mangrove sediments are known sources for methane emission that has a very high global warming potential. The spatio-temporal emission of methane in the mangrove sediments was quantified in the present study using the static closed chamber technique. Besides, the effects of environmental parameters on methane emission were estimated at Betim (mouth), Chorão (midstream), and Volvoi (upstream) stations along the tropical Mandovi estuary. On an average, the methane emission at the upstream estuarine station at Volvoi was maximum (1268.68 ± 176nMcm-2h-1) compared to the other two stations. Annually, the methane emission was significantly influenced by physicochemical parameters like salinity at Betim and Volvoi and, the redox potential at the midstream station at Chorão. The variation of methane emission between the 3 stations (P < 0.001) is attributed to the variation in methanotrophy (P < 0.05) and methanogenesis (P < 0.05) influenced by differences in the concentration of nutrients (P < 0.05) and organic carbon (P < 0.05). Seasonally, the highest methane emission at Chorão was during the post-monsoon, at Betim was during the monsoon season (1305.34 ± 108.58nMcm-2h-1), and at the upstream station at Volvoi, the emission of methane was highest during the pre-monsoon season (1514.68 ± 130.94nMcm-2h-1). The influence of environmental parameters was more prominent on methane emission at the 3 stations during the monsoon season. Spearman's correlation analysis indicated that seasonal changes in methane emissionare not only attributed to the influence of seasonal rainfall that leads to the fresh water input, but also to the variation in biogeochemical parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.