Abstract

The water-lubricated bearing in ship propulsion system is easily impacted by sea wave shock, which is a great threat to the smooth start-up of the bearing system. Therefore, in the present research, the Euler equations, average Reynolds equation, and sea wave shock function are combined together to build the start-up model of water-lubricated bearing. The influences of amplitude, direction, and entry time of sea wave shock on the start-up performance of bearing are studied. The result shows that the shaft has a strong instantaneous vibration under the influence of friction force at the initial start-up stage, and the shock load with appropriate direction and amplitude can suppress or even eliminate this vibration phenomenon. The earlier the shock enters the start-up process, the more serious asperity contact gets, and the worse the system’s stability becomes. The increase of the shock load amplitude and the advance of the shock load entry time can help the shaft rapidly lift off. This study can provide a reference for the smooth start-up of ship propulsion system in a sea wave environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.