Abstract

Abstract Despite the observed high correlation between the Atlantic sea surface temperature (SST) and the Atlantic tropical cyclone (TC) activity, interpretation of this relationship remains uncertain. This study suggests that the tropical Atlantic sea surface warming induces a pair of anomalous low-level cyclones on each side of the equator, providing favorable conditions for enhancing TC formation east of 45°W, while the effect of SST warming in the tropical Indian Ocean and Pacific Ocean tends to suppress the TC formation. Over the past 30 years (1978–2007), the TC activity in the Atlantic basin is characterized with significant enhancement of TC formation east of 45°W, where the total TC number increased significantly compared to the period 1948–77. Despite the possible undercount of TCs, this study shows that the recently enhanced TC formation may not be totally accounted for by the poor TC observing network prior to the satellite era. The Atlantic sea surface warming that occurred in recent decades might have allowed more TCs to form, to form earlier, and to take a longer track, while the effect is partially offset by the SST warming in Indian and Pacific Oceans. This study suggests that the close relationship between the Atlantic SST and TC activity over the past 30 years, including basinwide increases in the average lifetime, annual frequency, proportion of intense hurricanes, and annual accumulated power dissipation index (PDI), as reported in previous studies, is mainly a result of the SST warming in the tropical Atlantic exceeding that in the tropical Indian and Pacific Oceans. The results agree with recent argument that the relative Atlantic SST change or the SST difference between the tropical Atlantic and other oceans play an important role in controlling long-term TC activity in the Atlantic basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call