Abstract

The electronic transport property of pure cadmium telluride (CdTe) nanotube, selenium-substituted and zinc-substituted CdTe nanotube-based molecular device are investigated with density functional theory. The electronic transport property of CdTe nanotube is studied in terms of device density of states (DOS), electron density, transmission spectrum, and transmission pathways. The substitution of selenium and zinc atoms along the left electrode and bias voltage has the impact in the DOS. The electron density is found to be more at cadmium site in the left electrode. The transmission spectrum provides the insight into the transmission of electrons from valence band to conduction band across CdTe nanotube. The transmission pathway provides the visualization of electron transmission along CdTe nanotube. The results of present work provide a clear vision to tailor CdTe nanostructures with enhanced electronic property with substitution impurity for optoelectronic devices and photovoltaic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.