Abstract

The study aims to evaluate the biomechanical properties of feline femora with craniocaudal screw-hole defects of increasing diameter, subjected to three-point bending and torsion to failure at two different loading rates. Eighty femoral pairs were harvested from adult cat cadavers. For each bending and torsional experiment, there were five groups (n = 8 pairs) of increasing craniocaudal screw-hole defects (intact, 1.5 mm, 2.0 mm, 2.4 mm, 2.7mm). Mid-diaphyseal bicortical defects were created with an appropriate pilot drill-hole and tapped accordingly. Left and right femora of each pair were randomly assigned to a destructive loading protocol at low (10 mm/min; 0.5 degrees/s) or high rates (3,000 mm/min; 90 degrees/s) respectively. Stiffness, load/torque-to-failure, energy-to-failure and fracture morphology were recorded. Defect size to bone diameter ratio was significantly different between defect groups within bending and torsional experiments respectively (intact [0%; 0%], 1.5 mm [17.8%; 17.1%], 2.0 mm [22.8%; 23.5%], 2.4 mm [27.8%; 27.6%], 2.7 mm [31.1%; 32.4%]) (p < 0.001). No significant differences in stiffness and load/torque-to-failure were noted with increasing deficit sizes in all loading conditions. Screw-hole (2.7 mm) defects up to 33% bone diameter had a maximum of 20% reduction in bending and torsional strength compared with intact bone at both loading rates. Stiffness and load/torque-to-failure in both bending and torsion were increased in bones subjected to higher loading rates (p < 0.001). Screw-hole defects up to 2.7 mm did not significantly reduce feline bone failure properties in this ex vivo femoral study. These findings support current screw-size selection guidelines of up to 33% bone diameter as appropriate for use in feline fracture osteosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.