Abstract

Short glass fiber reinforced polymers are used in many different applications due to their good property profiles. These properties are directly correlated with the fiber length present in the final composite, which can be influenced through the process. Therefore, the aim of this work was to investigate the influence of processing temperature and screw configuration in compounding on the properties of glass fiber reinforced polypropylene. On the one hand, the barrel temperature was varied between 180°C and 260°C and, on the other hand, four different screw configurations were applied using a standard temperature profile. Specimens were produced by injection molding, which were tested via mechanical characterization, density, and fiber length measurements as well as morphology through microscopical analysis. We found, that with higher barrel temperatures and screw configurations bringing lower shear into the melt the glass fiber length is preserved better, thus resulting in improved composite properties. Also the interfacial interaction is not influenced within the investigated parameters, as was checked via the application of a micromechanical model in composite strength. POLYM. ENG. SCI., 59:1552–1559 2019. © 2019 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.