Abstract

IntroductionStereotactic body radiation therapy is widely used for the hypofractionated treatment of prostate cancer. The range of total doses used in different clinical trials varies from 33.5 to 50 Gy delivered in 4 or 5 fractions. The choice of an optimal total dose value and fractionation regimen for a particular patient can be carried out using the integral radiobiological criteria, namely tumour control probability (TCP) and normal tissue complication probability (NTCP). In this study, we have investigated the dependence of simulated TCP/NTCP values on total dose in the range of 30–40 Gy delivered in 4 or 5 fractions for patients with low-risk prostate cancer in order to find the optimal total dose value and fractionation regimen. MethodsThe anatomic data (DICOM CT images) of 12 patients with low-risk prostate cancer, who were treated at Tomsk Regional Oncology Centre, were used for the calculation. Dosimetric treatment plans for all patients were simulated using VMAT with 2 arcs in the Monaco treatment planning system v5.10 (Elekta Instrument AB, Stockholm) with a total dose equal to 36.25 Gy. The dosimetric plans were rescaled in the dose range of 30–40 Gy. The TCP and NTCP values were calculated based on differential dose volume histograms using the Niemierko model for both TCP and NTCP, and the Källman-s model for NTCP calculations. The TCP calculation was carried out using the uncertainty of well-known tumour radiobiological parameters values, including α/β value. NTCP was calculated for an anterior rectal wall, which was the most irradiated organ at risk due to its close contact with the planning target volume. ResultsThe TCP and NTCP calculations for VMAT of the prostate cancer have shown that the optimal total dose ranges were equal to 32–34 Gy delivered in 4 fractions or 35–38 Gy delivered in 5 fractions. At doses lower than the optimal ones, the TCP values were lower than 95%, while TCP uncertainties were significant (as low as 80%). This fact might bring unexpectedly poor treatment results. At doses higher than optimal ones, the probability of toxicity to the anterior rectal wall became significant. ConclusionThe optimization of radiation therapy regimen based on TCP/NTCP criteria could help to determine an optimal total dose and a number of fractions for a particular patient depending on patient-specific anatomic features and planned dose distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.