Abstract

Composite microwave absorbers based on ATO (antimony-doped tin oxide) and W-type ferrite were prepared by a co-precipitation method, and the effects of Sb content on electromagnetic properties and reflection loss characteristics were studied in 2–18GHz. The prepared composite particles were characterized with X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The results showed that the nano-particles ATO were coated with the surface of hexagonal flake ferrite, and with the increase of Sb content, the grain size of ATO nano-particles decreases resulting in agglomeration. The complex permittivity and permeability of the ferrite/ATO composites were analyzed by a vector network analyzer (Agilent E5071C), and the reflection loss was simulated by software YRComputer. The dielectric loss mainly comes from ATO, with the increase of Sb content, the real and imaginary parts of permittivity of the composites increase first, then decrease; The interface effects and surface effects lead to the increase of imaginary part μ″ of the absorbing materials in the macro; When the mole ratio of Sb/Sn is 2:10, the reflection loss reaches the maximum value −43.07dB at 10.64GHz for a layer 2.8mm, and the bandwidth over an absorptivity of 90% (−10dB reflection loss) is 8.32GHz (ranging from 7.12GHz to 15.44GHz).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call