Abstract

Mechanical and relaxation restitution represent the restoration of contractile force and relaxation, respectively, in premature beats having progressively longer extrasystolic intervals (ESI); these phenomena are related to intracellular activator Ca(2+) by poorly defined mechanisms. We tested the hypothesis that the level of phospholamban [which modulates the affinity of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase for Ca(2+), and thus the SR Ca(2+) load] may be an important determinant of both mechanical and relaxation restitution. Five mice with ablation of the phospholamban (PLB) gene (PLBKO), eight isogenic wild-type controls (129SvJ), eleven mice with PLB overexpression (PLBOE), and nine isogenic wild-type (FVB/N) controls were anesthetized and instrumented with a 1.4-Fr Millar catheter in the left ventricle and a 1-Fr pacemaker in the right atrium. At a cycle length of 200 ms, extrastimuli with increasing ESI were introduced, and the peak rates of left ventricular isovolumic contraction (+/-dP/dt(max)) were normalized and fit to monoexponential equations. In a subset, the protocols were repeated after ryanodine (4 ng/g) was administered to deplete SR Ca(2+) stores. The time constant of mechanical restitution in PLBKO was significantly shorter [6.3 +/- 1.2 (SE) vs. 47.7 +/- 7.6 ms] and began earlier (50 +/- 10 vs. 70 +/- 19 ms) than in 129SvJ. In contrast, the time constant of mechnical restitution was significantly longer (80.3 +/- 7.6 vs. 54.1 +/- 9.2 ms) in PLBOE than in FVB/N. The time constant of relaxation restitution was less in PLBKO than in 129SvJ (26.2 +/- 9.9 vs. 44.6 +/- 3.3, P < 0.05) but was similar in PLBOE and FVB/N (21.1 +/- 6.3 vs. 20.5 +/- 5.7 ms). Intravenous ryanodine decreased significantly the time constants of mechanical restitution in PLBOE, 129SvJ, and FVB/N but was lethal in PLBKO. In contrast, ryanodine increased the time constant of relaxation restitution. Thus 1) the phospholamban level is a critical determinant of mechanical restitution and (to a lesser extent) relaxation restitution in these transgenic models, and 2) ryanodine differentially affects mechanical and relaxation restitution. Furthermore, our data suggest a dissociation of processes within the SR that govern contraction and relaxation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call