Abstract

The effect of differences in applied pressure and time of sampling on pH values of xylem sap collected using the leaf pressurization technique was examined in two grapevine varieties originating from contrasting habitats ( Vitis vinifera L., cvs. Sabatiano and Mavrodafni) after subjecting them to drought. Three fractions of xylem sap exudates were collected from each leaf according to differences in applied pressure; fractions (I), (II) and (III) corresponding to 1 MPa, 2 MPa and 2.5 MPa pressure, respectively. The pH values in fraction (I) were significantly lower than those in fractions (II) and (III). The sap pH values in fraction (III) seemed to better correspond to changes in leaf apoplastic pH. The time of sampling was found to strongly influence xylem pH values. In particular, a positive relationship between predawn xylem pH values and soil drying was observed. Conversely, xylem pH values measured later during the day (i.e. at 8:00, 9:00 and 10:00 am) were not significantly affected by the reduction in soil water availability in both varieties. It is suggested that the most suitable period for sap sampling in order to better discriminate drought effects on xylem sap pH is at predawn. Furthermore, there were significant differences in pH values as well as in the sensitivity of stomatal conductance to pH between the two varieties. These differences might be related to strategy differences between grapevine varieties for adaptation to drought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.