Abstract
The influence of sample thickness on the fracture behaviour of an aliphatic polyketone and a blend of this polymer and 10 wt% core–shell rubber was studied. The sample thickness was varied from 0.1 to 8 mm. The skin morphology was studied by SEM. The fracture behaviour was studied on single edge notch specimen at a high strain rate (30 s −1) in the temperature range of −40 to 120 °C. The fracture stress, fracture strain and fracture energies were determined. The temperature development in the notch area was followed with an Infra Red camera. The cavitation of the rubber particles was studied on tensile bars with a laser setup. With decreasing specimen thickness the fracture energies increased strongly and the brittle-ductile transition shifted to lower temperatures this both for the aliphatic polyketone and the polyketone-rubber blend. The deformation in these materials in accompanied with a strong temperature increase in the deformation zone. The addition of rubber particles decreases the sensitivity towards the thickness. However, in very thin samples the cavitation of the rubber particles is more difficult and the rubber toughening effect decreases. The strong thickness effects on the fracture toughness indicate for both the homo polymer and the blend indicate that data from a standard test with 4 mm thick samples are not representative for thin walled applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.