Abstract

Development of rotating vortex rope (RVR) at part load (PL) operation is a source of pressure fluctuations in draft tube and power swings, which may lead to runner failure under extreme conditions. Fluid injection methodologies like air and water injection may be employed to mitigate the RVR and the pressure pulsations associated with it. A small turbine test rig is being developed at IIT Roorkee (India) to study the effect of the fluid injection measures (air/ water) in the Francis turbine. The present work summarizes a preliminary numerical investigation of the runner cone design and water jet injection to be used in the test rig. The runner cone is modified to incorporate provisions for axial water jet injection. Two different runner cone designs have been compared based on power output, efficiency, pressure recovery, and pressure pulsations in the draft tube for four different jet discharges. The water jet affects both the magnitude and the frequency of the pressure pulsations associated with RVR, and improves the overall efficiency. The results also indicate that the water jet injection may not always be effective and may increase pressure fluctuations in some cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call