Abstract
Understanding the influence of bearing component roundness errors and roller number on the rotational accuracy of rolling bearings is crucial in the design of high precision bearings. The rotational accuracy of an assembled bearing is dependent upon roller number and roundness errors of the bearing components. We propose a model for calculating the rotational accuracy of a cylindrical roller bearing; we experimentally verified the effectiveness of the model in predicting the radial run-out of the inner ring proposed in the previous paper in this series. We sought to define the key contributing factors to the rotational accuracy by studying both the influence of the coupling effect of the roller number and the influence of the roundness errors in the inner raceway, outer raceway, and rollers on the motion error. The model and results will help engineers choose reasonable manufacturing tolerances for bearing components to achieve the required rotational accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.