Abstract

To evaluate the impact of rotational setup errors on dose distribution in spinal stereotactic body radiotherapy (SBRT). Thirty-nine cone beam computed tomography (CBCT) scans from 16 SBRT treatment courses were analyzed. Alignment (including rotation) to the treatment planning computed tomography was performed, followed by translational alignment that reproduced the actual positioning. The planned fluence was then applied to determine the delivered dose to the targets and organs at risk. The mean planning target volume (PTV) was 71.01 mL (SD +/- 60.05; range, 22.62-250.65 mL). Prescribed dose (to the 62-82% isodose) was 14-30 Gy in one to six fractions. The average rotational displacements were 0.38 +/- 1.21, 1.12 +/- 1.82, and -0.51 +/- 2.0 degrees with maximal rotations of -4.29, 5.76, and -6.64 degrees along the x (pitch), y (yaw), and z (roll) axes, respectively. PTV coverage changed by an average of -0.07 Gy (SD +/- 0.20 Gy) between the rotated and the original plan, representing 0.92% of prescription dose (SD +/- 2.65%). For the spinal cord, planned with 2-mm expansion to create a planning organ at risk volume (PRV), the difference in minimum dose to the upper 10% of the PRV volume was 0.03 +/- 0.3 Gy (maximum, 0.9 Gy). Other organs at risk saw insignificant changes in dose. PRV expansion generally assures safe treatment delivery in the face of typically encountered rotations. Given the variability of delivered dose within this expansion for certain cases, caution should be taken to properly interpret doses to the cord when considering clinical dose limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call