Abstract

The N+H2 reaction has attracted a great deal of attention from both the experimental and the theoretical community, and most of the attention has been paid to the first excited state N(2D) atoms in collisions with hydrogen molecules and the scalar properties of the reaction. In this paper, we study the stereo dynamical properties and calculate the reaction cross sections of the N(4S) + H2 (v = 0, j = 0, 2, 5, 10) → NH(X3Σ−) + H using the quasi-classical trajectory (QCT) method on an accurate NH2 potential energy surface (PES) reported by Poveda and Varandas [Poveda L A and Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867], in a collision energy range of 25 kcal·mol−1−140 kcal·mol−1. Results indicate that the reactant rotational excitation and initial collision energy both have a considerable influence on the distributions of the k—j′ correlation, the k—k′—j′ correlation and k—k′ correlation. The differential cross section is found to be sensitive to collision energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.