Abstract

Granular particles systems under vertical vibration exhibit Brazilian Nut separation (BN), Reversed BN (RBN) separation or transitional phases at different vibrating conditions. In the present work, we investigate the influence of rotation on the BN separation of a binary granular particle system by changing rotational speed. 13X molecular sieve particles with diameter 6.00 mm and 0.60 mm are used. Vibration frequency f is 30 Hz and dimensionless acceleration Γ is 1.52 or 1.75, in which the particle system mainly exhibits BN separation tendency. Rotational speed ω varies from 0 to 150rpm, while the upper surface of the particle system maintains flat. We took the pictures of the particles distribution and measured the particles mass layer by layer to obtain the 3-D distribution of the particles. The results show that rotation enhances the BN separation tendency at slow rotational speed. The BN separation becomes strongest when ω is approximately 50rpm, then the BN separation tendency reduces as ω continues to increase. A butterfly pattern appears in the middle particles layer under the simultaneous stimulations of vibration and rotation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call