Abstract

A crossdated, replicated, chronology of 114 years (1901–2014) was developed from internal growth increments in the shells of Glycymeris glycymeris samples collected monthly from the Bay of Brest, France. Bivalve sampling was undertaken between 2014 and 2015 using a dredge. In total 401 live specimens and 243 articulated paired valves from dead specimens were collected, of which 38 individuals were used to build the chronology. Chronology strength, assessed as the Expressed Population Signal, was above 0.7 throughout, falling below the generally accepted threshold of 0.85 before 1975 because of reduced sample depth. Significant positive correlations were identified between the shell growth and the annual averages of rainfall (1975–2008; r = 0.34) and inflow from the river Elorn (1989–2009; r = 0.60). A significant negative correlation was identified between shell growth and the annual average salinity (1998–2014; r = -0.62). Analysis of the monthly averages indicates that these correlations are associated with the winter months (November–February) preceding the G. glycymeris growth season suggesting that winter conditions predispose the benthic environment for later shell growth. Concentration of suspended particulate matter within the river in February is also positively correlated with shell growth, leading to the conclusion that food availability is also important to the growth of G. glycymeris in the Bay of Brest. With the addition of principle components analysis, we were able to determine that inflow from the River Elorn, nitrite levels and salinity were the fundamental drivers of G. glycymeris growth and that these environmental parameters were all linked.

Highlights

  • In total 401 live- and 243 dead-collected G. glycymeris with paired valves were collected between September 2014 and November 2015

  • In this study we examined the internal growth increment series in shells of the marine bivalve G. glycymeris collected from the Bay of Brest, France

  • This study indicates that Glycymeris glycymeris in the Bay of Brest is highly sensitive to the fresh water inflow from the River Elorn, as well as to food availability mediated by increased suspended particulate matter (SPM) in the late winter

Read more

Summary

Introduction

Annually-resolved palaeoenvironmental archives such as tree-rings [1, 2, 3] ice cores [4, 5, 6] and corals [7, 8] have provided valuable insights into the terrestrial and tropical marine environments. Riverine influence on growth of G. glycymeris in NW France analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call