Abstract

The nonlinear electrophoresis of a soft particle with a polarizable uncharged rigid core coated with a polyelectrolyte layer is studied. Due to the coupled nature of the governing electrokinetic equations, a numerical approach is adopted. Our numerical solutions are in good agreement with the existing experimental and theoretical results for a particle with a non-polarizable core when the impacts of the nonlinear effects are low. The induced surface potential of the dielectric rigid core has an impact on the soft particle electrophoresis. The combined effects of the solid polarization of the core and double layer polarization have not been addressed previously in the context of soft particle electrophoresis. We have found that both these effects create retardation on the electrophoresis and are significant when the applied electric field is not weak. The double layer polarization is significant when the Debye length is in the order of the particle size. The range of the applied electric field for which the electrophoretic velocity of a soft particle with a non-polarizable core varies linearly with the applied electric field may create a nonlinear variation in electrophoretic velocity when the core is considered to be polarizable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.