Abstract

This study investigated the effects of rice husk dose and pyrolysis temperature on the phosphorus (P) fractions and environmental risk of heavy metals in biochar co-pyrolyzed from sewage sludge and rice husk. Biochar properties were analyzed, and the transformation of P and heavy metals speciation during co-pyrolysis were also discussed. Co-pyrolysis of raw sludge and rice husk (10–50 wt%) could increase the carbonization degree and stability of biochar at 500 °C. The organic P (OP) in raw sludge (68 wt%) was transformed to inorganic P (IP) during co-pyrolysis, indicating that the addition of rice husk could improve biochar-P bioavailability by promoting the transformation of IP. The IP content increased from 71.5 wt% of sludge biochar to 92 wt% of blended biochar (50 wt% sludge and 50 wt% rice husk) at a pyrolysis temperature of 500 °C. With the mass ratio of sludge to rice husk of 5:5, the OP content decreased from 3 mg g−1 to 0.75 mg g−1 as the pyrolysis temperature increased from 300 °C to 700 °C. The 31P nuclear magnetic resonance spectra and X-ray photoelectron spectroscopy results showed that P species in biochar mainly existed as orthophosphate, which can be directly taken up by plants. After co-pyrolysis, the toxicity and mobility of heavy metals gradually decreased with increasing rice husk dose and pyrolysis temperature. The study indicates that co-pyrolysis of sewage sludge and rice husk could be a promising P reuse strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.