Abstract

The effect of surfactants on the biodegradation of trifluralin and atrazine (by Streptomyces PS1/5) and coumaphos (by degrading consortia from a contaminated cattle dip) in liquid cultures and soil slurries was tested at different concentrations of a rhamnolipid mixture (Rh-mix) and Triton X-100 (TX-100). The extent of trifluralin biodegradation in liquid culture was improved at high concentrations of both surfactants. The extent of atrazine degradation dropped in the presence of either surfactant. Coumaphos biodegradation improved slightly at Rh-mix dosages >3000 microM; however, it was readily inhibited by TX-100 at amounts above the critical micelle concentration. In soil slurries, the extent of both trifluralin and atrazine biodegradation was higher in Hagerstown A (HTA) soil than in Hagerstown B (HTB) soil and was not significantly affected by the presence of either surfactant. The onset of trifluralin biodegradation was retarded at higher concentrations of surfactants. In the absence of surfactant, up to 98% of coumaphos in both soil slurries was transformed. At increasing dosages of Rh-mix, the onset of coumaphos biodegradation was retarded, but the removal efficiency of the pesticide increased. Rh-mix and TX-100 depletion was observed during Streptomyces PS1/5 growth in liquid cultures. Rh-mix concentration also decreased during coumaphos biodegradation, whereas TX-100 concentration was not affected. These results suggest that surfactants, added for the purpose of increasing the apparent water solubility of hydrophobic organic compounds, may have unintended effects on both the rate and extent of biodegradation of the target compounds if the surfactants can also be degraded by the microorganisms in the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.