Abstract

An incompressible electrically conducting viscous fluid flow influenced by a local external magnetic field may develop vortical structures and eventually instabilities similar to those observed in flows around bluff bodies (such as circular cylinder), denominated magnetic obstacle. The present investigation analyses numerically the three-dimensional flow and heat transfer around row of magnetic obstacles. The vortex structures of magnetic obstacles, heat transfer behaviors in the wake of magnetic obstacles and flow resistance are analyzed at different Reynolds numbers. It shows that the flow behind magnetic obstacles contains four different regimes: (1) one pair of magnetic vortices, (2) three pairs namely, magnetic, connecting, and attached vortices, (3) smaller vortex shedding from the in-between magnetic obstacles, i.e. quasi-static and (4) regular vortex shedding from the row of magnetic obstacles. Furthermore, downstream cross-stream mixing induced by the unstable wakes can enhance wall-heat transfer, and the maximum value of percentage heat transfer increment (HI) is equal to about 35%. In this case, the thermal performance factor is more than one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.