Abstract

AbstractThe abrupt decline in sea ice in the Barents–Kara (BK) Sea because of global warming has been argued to influence not only higher latitudes but also the tropics. Using EC‐Earth model simulations, we demonstrated that the El Niño–Southern Oscillation (ENSO) period becomes longer when BK sea ice substantially decreases. As BK sea ice was forcibly reduced through nudging experiments, the mean Walker circulation shifted to the west, and the zonal sea surface temperature contrast in the tropical Pacific was enhanced. Consequently, the western Pacific mean thermocline became deeper, which reduced the sensitivity of oceanic wave response to wind forcing. Therefore, the oceanic Kelvin waves reflected by ENSO‐induced surface winds, a primary delayed negative feedback factor, were significantly weakened. Thus, ENSO phases could be sustained for longer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.