Abstract

The aim of this field experiment was to explore the combined effects of two factors potentially affecting the local composition of soil decomposer community: resource quality and habitat fragmentation. We created humus (habitat) patches with three different resource quality: (1) pure homogenised humus; (2) humus enriched with needle litter; and (3) humus enriched with needle and leaf litter. These patches were embedded either in a mineral soil matrix, thus representing fragmented habitat, or in natural forest soil, representing continuous (non-fragmented) habitat. The development of faunal (colonisations/extinctions of soil animal populations) and microbial communities in the patches was followed for 12 months. Our results partly supported the hypothesized strong influence of resource quality on the structure of local soil food webs: the abundances of practically all groups of soil fauna, together with biomass of fungi, were higher in the litter-enriched patches than in the pure humus patches. The manifestation and magnitude of the responses of fauna were, however, strongly affected by complex interactions between the characteristics (especially colonisation capacity) of the faunal group in question, habitat quality and time of sampling. In microarthropods and nematodes, the effect of resource quality cascaded up to the predatory level, rendering further support to the existence of strong bottom-up control in soil food webs. Contrary to our expectations, species richness of the communities was not unanimously affected by resource quality. Habitat fragmentation affected the communities only through different number and identity of patch-colonising species in the fragmented and continuous habitat: fragmentation induced no extinctions of species during the experiment at any resource quality level. Consequently, the results indicate that resource quality is more important factor than habitat fragmentation in determining the local structure of communities in soils. On the other hand, colonisation capacities of soil organisms appear to set limits to the exploitation of local resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.