Abstract

A resonance tube is an important component of a thermoacoustic engine, which has great influence on the performance of the thermoacoustically driven pulse tube refrigerator. A standing wave thermoacoustic engine is simulated with linear thermoacoustics. Computed results show that an appropriate accretion of the resonance tube length may lead to a decrease of the working frequency and an increase of the pressure amplitude, which will improve the match between the thermoacoustic engine and the pulse tube refrigerator. The theoretical prediction is verified by experiments. A refrigeration temperature as low as 88.6 K has been achieved with an optimized length of the resonance tube, helium as working gas, and 2200 W of heating power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.