Abstract
To evaluate the stress behavior of ceramic fragment restoration, varying the thickness of the cement layer and intraoral temperature variation. A solid model of a upper lateral incisor was obtained and a defect at enamel distal/incisal edge was restored with a ceramic fragment. Based on this initial model, 4 different models (M) were built: M1 – absence of cement layer (CL) (0 μm of thickness); M2 – CL with an uniform thickness of 50 μm; M3 – CL with 50 μm at the margin of ceramics and 100 μm in the inner area far from margins; M4 – CL with 50 μm at the margin of ceramics and 200 μm in the inner area far from margins. The environment temperature changed from 5 °C to 50 °C in 4 increments. The finite element analysis was performed. Increase the cement layer thickness generated higher stress levels on ceramic surface in all temperatures, as well as on cement interface. In general hot temperature was the worst scenario for ceramic fragments integrity, since tensile and compressive stress were more intense. The maximum principal stress on ceramic fragment was found 90 MPa for M4 at 50 °C, followed for M3 (87 Mpa). For CL, the peak of stress was found for M3 at 5 °C (47 MPa). Is it possible to conclude that thick resin cement layer contribute to higher stress concentration on ceramic fragment, and extremely hot temperatures increase the risk of structural failure, since both ceramic and \\cl are exposed to higher compressive and tensile stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.