Abstract

Effect of the residual stress on the recovery and recrystallization behaviors of the cold-rolled AA3003 aluminum alloy was investigated. The evolution of deformed microstructure and dislocation density characterized by TEM and Synchrotron X-ray measurements found that the change in the ratio between low angle grain boundaries (LAGBs) and high angle grain boundaries (HAGBs) during annealing is varied depending on the initial dislocation density, where the value of HAGB/LAGBs ratio is amounted to be about 0.8 at maximum. The nucleation and growth rate of the recrystallized grains are strongly dependent on the net driving pressure associated with dislocation density increased by the amount of reduction. EBSD analysis revealed that the deformed zone composed of the fine equi-axed grains with large misorientation angles would be formed in the vicinity of the constituent particles, which is consistent with the region of the large residual stress and total displacement predicted by Eshelby inhomogeneity problem under cold rolling condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.