Abstract
Titania-supported ruthenium (Ru/TiO2) is an established catalyst for the hydrogenation of carbon dioxide to methane (Sabatier reaction). Chlorine contamination, owed to the RuCl3 precursor, is demonstrated to have a detrimental impact on methanation activity. After calcination and reduction the catalyst contains residual chlorine, shown by XPS. An aqueous ammonia wash removes Cl without leaching Ru. The washed catalysts exhibit improvements in CH4 site-time yields. Low Ru loading catalysts encounter the greatest activity enhancements after washing (∼4.5–fold). DFT calculations indicate that chlorine and CO2 directly compete for adsorption on Ru step sites, with Cl impeding the adsorption of CO2 at under-coordinated sites and at higher Cl coverages. H2-chemisorption/TPR show that Cl removal lowers the onset of low temperature H2 dissociation on Ru. DRIFTS provide evidence that the removal of Cl facilitates low temperature dissociative binding of CO2, indicated by the formation of surface bound linear CO species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.