Abstract

A number of studies have revealed the usefulness of multimodal imaging in gliomas. Although the results have been heavily affected by the method used for region of interest (ROI) design, the most discriminatory method for setting the ROI remains unclear. The aim of the present study was to determine the most suitable ROI design for 18F-fluorodeoxyglucose (FDG) and 11C-methionine (MET) positron emission tomography (PET), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) from the viewpoint of grades of non-enhancing gliomas. A total of 31 consecutive patients with newly diagnosed, histologically confirmed magnetic resonance (MR) non-enhancing gliomas who underwent FDG-PET, MET-PET and DTI were retrospectively investigated. Quantitative measurements were performed using four different ROIs; hotspot/tumor center and whole tumor, constructed in either two-dimensional (2D) or three-dimensional (3D). Histopathological grading of the tumor was considered as empirical truth and the quantitative measurements obtained from each ROI was correlated with the grade of the tumor. The most discriminating ROI for non-enhancing glioma grading was different according to the different imaging modalities. 2D-hotspot/center ROI was most discriminating for FDG-PET (P=0.087), ADC map (P=0.0083), and FA map (P=0.25), whereas 3D-whole tumor ROI was best for MET-PET (P=0.0050). In the majority of scenarios, 2D-ROIs performed better than 3D-ROIs. Results from the image analysis using FDG-PET, MET-PET, ADC and FA may be affected by ROI design and the most discriminating ROI for non-enhancing glioma grading was different according to the imaging modality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.