Abstract

Ti-stabilized 321 stainless steel was prepared using an electric arc furnace, argon oxygen decarburization (AOD) furnace, ladle furnace (LF), and continuous casting processes. In addition, the effect of refining process and utilization of different slags on the evolution of inclusions, titanium yield, and oxygen content was systematically investigated by experimental and thermodynamic analysis. The results reveal that the total oxygen content (TO) and inclusion density decreased during the refining process. The spherical CaO–SiO2–Al2O3–MgO inclusions existed in the 321 stainless steel after the AOD process. Moreover, prior to the Ti addition, the spherical CaO–Al2O3–MgO–SiO2 inclusions were observed during LF refining process. However, Ti addition resulted in multilayer CaO–Al2O3–MgO–TiOx inclusions. Two different samples were prepared by conventional CaO–Al2O3-based slag (Heat-1) and TiO2-rich CaO–Al2O3-based slag (Heat-2). The statistical analysis revealed that the density of inclusions and the TiOx content in CaO–Al2O3–MgO–TiOx inclusions found in Heat-2 sample are much lower than those in the Heat-1 sample. Furthermore, the TO content and Ti yield during the LF refining process were controlled by using TiO2-rich calcium aluminate synthetic slag. These results were consistent with the ion–molecule coexistence theory and FactSage™7.2 software calculations. When TiO2-rich CaO–Al2O3-based slag was used, the TiO2 activity of the slag increased, and the equilibrium oxygen content significantly decreased from the AOD to LF processes. Therefore, the higher TiO2 activity of slag and lower equilibrium oxygen content suppressed the undesirable reactions between Ti and O.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call