Abstract

The influence of waste glass and red mud addition as alternative source of aluminosilicate precursors on the microstructural, mechanical, and leaching properties of bottom ash-based geopolymer was studied in this work through mineralogical, morphological, and spectroscopic analysis, as well as by conducting compressive strength and leaching tests. The bottom ash-based geopolymer composites were synthesized by adding a constant amount of waste glass (10% by weight) and increasing amounts of red mud (up to 30% by weight). The results derived from FTIR, 29Si and 27Al MAS NMR, and SEM–EDX revealed that adding up to 10% (by weight) red mud to the synthesis mixes leads to an increase in the degree of geopolymerization of the activated mixes. The compressive strength followed the same trend. An increase of more than 10% (by weight) red mud added to the synthesis mixes results in a significant decrease of compressive strength of the geopolymer composites. A low leachability of geopolymer composites in regard with their contaminants was revealed especially for those with good compressive strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.